If it's not what You are looking for type in the equation solver your own equation and let us solve it.
18x^2-31=0
a = 18; b = 0; c = -31;
Δ = b2-4ac
Δ = 02-4·18·(-31)
Δ = 2232
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2232}=\sqrt{36*62}=\sqrt{36}*\sqrt{62}=6\sqrt{62}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-6\sqrt{62}}{2*18}=\frac{0-6\sqrt{62}}{36} =-\frac{6\sqrt{62}}{36} =-\frac{\sqrt{62}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+6\sqrt{62}}{2*18}=\frac{0+6\sqrt{62}}{36} =\frac{6\sqrt{62}}{36} =\frac{\sqrt{62}}{6} $
| 4x+12+3x-7=180 | | 6x-18=12-4x | | 8-2(x-5)=x-3= | | 39+3x=(-x+2)-15 | | 1x+12-7=180 | | 10x-6=2x+12 | | 840+0.17x=0.55x | | 18+1.50x=12.00+2.75x | | 3x+10x^2-18=0 | | 4y−5=7 | | x^2-2x+12.5=0 | | −9−4x=5−2x | | (2x-6)-4(3x+2)=6-2(8x+1) | | 22+28−x=-30 | | 8x+22x=-31 | | ?+6x?=40 | | 5(3-2(1-4x))+8x=-1+6(8x+1) | | 60,000=2000(2^t) | | 1/4x-9=10 | | -0.5=(x-63.6)/2.5 | | 2+x=9-12 | | 90+9m=162 | | 17n-30=225 | | 1-7x=2x+19 | | 8(x-6)+6=7x-2 | | 7(x-8)+21=7x-34 | | 6(x-2)+10=6x-2 | | 9x+3-2(3x-1+2x)=4(5x+1) | | 7x-5=5x=17 | | 7(2x-3)=6x-5 | | 4c^2+12c=0 | | 5-4(3-2x)-(5x+6)=3x+2 |